设集合,,则( )
A. B. C. D.
已知均为实数.
(1)求证:;
(2)若,,,证明:.
在平面直角坐标系中,己知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.点在曲线上运动,点为线段的中点.
(1)求动点的运动轨迹的参数方程;
(2)若直线与的公共点分别为,当时,求的值.
已知函数,其中
为自然对数的底数.
(1)当时,讨论函数的单调性;
(2)当时,求证:对任意的.
椭圆()的离心率等于,它的一个长轴端点恰好是抛物线的焦点.
(1)求椭圆的方程;
(2)若直线与椭圆有且只有一个公共点,且直线与直线和分别交于两点,试探究以线段为直径的圆是否恒过定点?若恒过定点,求出该定点,若不恒过定点,请说明理由.
人耳的听力情况可以用电子测听器检测,正常人听力的等级为(分贝),并规定测试值在区间为非常优秀,测试值在区间为优秀,某班名同学都进行了听力测试,所得测试值制成频率分布直方图:
(Ⅰ)现从听力等级为的同学中任意抽取出4人,记听力非常优秀的同学人数为,求的分布列与数学期望:
(Ⅱ)现选出一名同学参加另一项测试,测试规则如下:四个音叉的发生情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号(其中为1,2,3,4的一个排列),记,可用描述两次排序的偏离程度,求的概率.