样本(x1,x2…,xn)的平均数为x,样本(y1,y2,…,ym)的平均数为.若样本(x1,x2…,xn,y1,y2,…,ym)的平均数,其中0<α<,则n,m的大小关系为
A.n<m B.n>m C.n=m D.不能确定
一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.
(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;
(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(Ⅰ)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?
某高校从大二学生中随机抽取200名学生,将其期末考试的《中西法律文化》成绩(均为整数)分成六组,,…,后得到如下频率分布直方图.
(1)求成绩在内的频率;
(2)根据频率分布直方图,估计该校大二学生期末考试《中西法律文化》成绩的众数、中位数(结果保留到0.1);
(3)用分层随机抽样的方法抽取一个容量为40的样本,则各成绩组应抽取的人数分别是多少?
随着“互联网+交通”模式的迅猛发展,“共享单车”在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了10名用户,得到用户的满意度评分分别为92,84,86,78,89,74,83,77,89.
(1)计算样本的平均数和方差;
(2)在(1)条件下,若用户的满意度评分在(,)之间,则满意度等级为“A级”.试估计该地区满意度等级为“A级”的用户所占的百分比.
参考数据:,,.
某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):
甲班:82 84 85 89 79 80 91 89 79 74
乙班:90 76 86 81 84 87 86 82 85 83
(1)求两个样本的平均数;
(2)求两个样本的方差和标准差;
(3)试分析比较两个班的学习情况.
在某中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知第二小组的频数是40.
(1)求第二小组的频率,并补全这个频率分布直方图;
(2)求这两个班参赛的学生人数;
(3)求这两个班参赛学生的成绩的中位数.