已知角的终边经过点,则=( )
A. B. C. D.
已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0.当直线l被圆C截得的弦长为时,求
(Ⅰ)a的值;
(Ⅱ)求过点(3,5)并与圆C相切的切线方程.
两城相距,在两地之间距城处地建一核电站给两城供电.为保证城市安全,核电站距城市距离不得少于.已知供电费用(元)与供电距离()的平方和供电量(亿度)之积成正比,比例系数,若城供电量为亿度/月,城为亿度/月.
(Ⅰ)把月供电总费用表示成的函数,并求定义域;
(Ⅱ)核电站建在距城多远,才能使供电费用最小,最小费用是多少?
如图,是正方形,是该正方形的中心,是平面外一点,底面,是的中点.求证:
(1)平面;
(2)平面平面.
已知函数f(x)=(c为常数),且f(1)=0.
(1)求c的值;
(2)证明函数f(x)在[0,2]上是单调递增函数;
(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.