已知角
的终边经过点
,则
=( )
A.
B.
C.
D.![]()
已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0.当直线l被圆C截得的弦长为
时,求
(Ⅰ)a的值;
(Ⅱ)求过点(3,5)并与圆C相切的切线方程.
两城相距
,在两地之间距
城
处
地建一核电站给
两城供电.为保证城市安全,核电站距城市距离不得少于
.已知供电费用(元)与供电距离(
)的平方和供电量(亿度)之积成正比,比例系数
,若
城供电量为
亿度/月,
城为
亿度/月.
(Ⅰ)把月供电总费用
表示成
的函数,并求定义域;
(Ⅱ)核电站建在距
城多远,才能使供电费用最小,最小费用是多少?
如图,
是正方形,
是该正方形的中心,
是平面
外一点,
底面
,
是
的中点.求证:

(1)
平面
;
(2)平面
平面
.
已知函数f(x)=
(c为常数),且f(1)=0.
(1)求c的值;
(2)证明函数f(x)在[0,2]上是单调递增函数;
(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.
