在平面直角坐标系xOy中,已知圆,三个点,B、C均在圆上,
(1)求该圆的圆心的坐标;
(2)若,求直线BC的方程;
(3)设点满足四边形TABC是平行四边形,求实数t的取值范围.
已知函数,,且是R上的奇函数,
(1)求实数a的值;
(2)判断函数)的单调性(不必说明理由),并求不等式的解集;
(3)若不等式对任意的恒成立,求实数b的取值范围.
某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)
(1)A类工人中和B类工人各抽查多少工人?
(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:
表1:
生产能力分组 | |||||
人数 | 4 | 8 | x | 5 | 3 |
表2:
生产能力分组 | ||||
人数 | 6 | y | 36 | 18 |
①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)
图1A类工人生产能力的频率分布直方图 图2B类工人生产能力的频率分布直方图
如图所示,在四棱锥P-ABCD中,,,,平面底面ABCD,E和F分别是CD和PC的中点.求证:
(1)平面BEF;
(2)平面平面PCD.
已知函数,,
(1)求的最小正周期;
(2)若,求的最大值和最小值,并写出相应的x的值.
已知,函数,,
(1)证明:是奇函数;
(2)如果方程只有一个实数解,求a的值.