满分5 > 高中数学试题 >

已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),...

已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.

(Ⅰ)求C的方程;

(Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

 

(1) . (2)证明见解析. 【解析】 试题(1)根据,两点关于y轴对称,由椭圆的对称性可知C经过,两点.另外由知,C不经过点P1,所以点P2在C上.因此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B的斜率分别为k1,k2,再设直线l的方程,当l与x轴垂直时,通过计算,不满足题意,再设l:(),将代入,写出判别式,利用根与系数的关系表示出x1+x2,x1x2,进而表示出,根据列出等式表示出和的关系,从而判断出直线恒过定点. 试题解析:(1)由于,两点关于y轴对称,故由题设知C经过,两点. 又由知,C不经过点P1,所以点P2在C上. 因此,解得. 故C的方程为. (2)设直线P2A与直线P2B的斜率分别为k1,k2, 如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,). 则,得,不符合题设. 从而可设l:().将代入得 由题设可知. 设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=. 而 . 由题设,故. 即. 解得. 当且仅当时,,欲使l:,即, 所以l过定点(2,)
复制答案
考点分析:
相关试题推荐

如图,在多面体ABCDEF中,四边形ABCD为平行四边形,平面ADE⊥平面CDEF,∠ADE60°DECFCDDEAD2DEDC3CF4,点G是棱CF上的动点.

(Ⅰ)当CG3时,求证EG∥平面ABF

(Ⅱ)求直线BE与平面ABCD所成角的正弦值;

(Ⅲ)若二面角GAED所成角的余弦值为,求线段CG的长.

 

查看答案

已知{an}为等差数列,前n项和为SnnN*),{bn}是首项为2的等比数列,且公比大于0b2+b312b3a42a1S1111b4

(Ⅰ)求{an}{bn}的通项公式;

(Ⅱ)求数列{anbn}的前n项和为TnnN*).

 

查看答案

为弘扬中华优秀传统文化,某中学高三年级利用课余时间组织学生开展小型知识竞赛.比赛规则:每个参赛者回答AB两组题目,每组题目各有两道题,每道题答对得1分,答错得0分,两组题目得分的和做为该选手的比赛成绩.小明估计答对A组每道题的概率均为,答对B组每道题的概率均为

(Ⅰ)按此估计求小明A组题得分比B组题得分多1分的概率;

(Ⅱ)记小明在比赛中的得分为ξ,按此估计ξ的分布列和数学期望Eξ

 

查看答案

ABC中,内角A,B,C所对的边分别为a,b,c.已知a2,c3,又知bsinAacosB).

(Ⅰ)求角B的大小、b边的长:

(Ⅱ)求sin2AB)的值.

 

查看答案

在平面直角坐标系中,O为坐标原点,A11),则的取值范围为___

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.