满分5 > 高中数学试题 >

已知椭圆的右焦点为,且经过点. (Ⅰ)求椭圆C的方程; (Ⅱ)设O为原点,直线与...

已知椭圆的右焦点为,且经过点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设O为原点,直线与椭圆C交于两个不同点PQ,直线APx轴交于点M,直线AQx轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.

 

(Ⅰ); (Ⅱ)见解析. 【解析】 (Ⅰ)由题意确定a,b的值即可确定椭圆方程; (Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM,ON的表达式,结合韦达定理确定t的值即可证明直线恒过定点. (Ⅰ)因为椭圆的右焦点为,所以; 因为椭圆经过点,所以,所以,故椭圆的方程为. (Ⅱ)设 联立得, ,,. 直线,令得,即; 同理可得. 因为,所以; ,解之得,所以直线方程为,所以直线恒过定点.
复制答案
考点分析:
相关试题推荐

经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;

(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:

A.所有黄桃均以20/千克收购;

B.低于350克的黄桃以5/个收购,高于或等于350克的以9/个收购.

请你通过计算为该村选择收益最好的方案.

参考数据:

 

查看答案

如图,在三棱锥P-ABC中,底面ABCHPC的中点,MAH的中点.

1)求PM与平面AHB成角的正弦值;

2)在线段PB上是否存在点N使得平面ABC.若存在,请说明点N的位置,若不存在,请说明理由.

 

查看答案

已知数列满足,其中的前项和,.

(1)求

(2)若数列满足,的值.

 

查看答案

已知函数,其中为自然对数的底数,若函数的图像恰有一个公共点,则实数的取值范围是______

 

查看答案

设函数,若,则______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.