设函数
,若不等式![]()
对任意a,
,且
恒成立,求实数x的取值范围.
在平面直角坐标系
中,已知直线l的参数方程为
(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是
.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C相交于两点A,B,求线段
的长.
已知点
,在矩阵
对应的变换作用下变为点
.
(1)求a和b的值;
(2)若直线l在M对应的变换作用下变为直线
,求直线l的方程.
已知等差数列
的前n项和
,且满足
,
,数列
是首项为2,公比为q(
)的等比数列.
(1)求数列
的通项公式;
(2)设正整数k,t,r成等差数列,且
,若
,求实数q的最大值;
(3)若数列
满足
,
,其前n项和为
,当
时,是否存在正整数m,使得
恰好是数列
中的项?若存在,求岀m的值;若不存在,说明理由.
已知函数
,
,
.
(1)求函数
的单调增区间;
(2)令
,且函数
有三个彼此不相等的零点0,m,n,其中
.
①若
,求函数
在
处的切线方程;
②若对
,
恒成立,求实数t的去取值范围.
如图,某湿地公园的鸟瞰图是一个直角梯形,其中:
,
,
,
长1千米,
长
千米,公园内有一个形状是扇形的天然湖泊
,扇形
以
长为半径,弧
为湖岸,其余部分为滩地,B,D点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段
线段
弧
,其中Q在线段
上(异于线段端点),
与弧
相切于P点(异于弧端点]根据市场行情
,
段的建造费用是每千米10万元,湖岸段弧
的建造费用是每千米
万元(步行道的宽度不计),设
为
弧度观光步行道的建造费用为
万元.

(1)求步行道的建造费用
关于
的函数关系式,并求其走义域;
(2)当
为何值时,步行道的建造费用最低?
