甲、乙两人用一颗均匀的骰子(一种正方体玩具,六个面分别标有数字1,2,3,4,5,6)做抛掷游戏,并制定如下规则:若掷出的点数不大于4,则由原掷骰子的人继续掷,否则,轮到对方掷.已知甲先掷.
(1)若共抛掷4次,求甲抛掷次数的概率分布列和数学期望;
(2)求第n次(,)由乙抛掷的概率.
在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.
(1)求抛物线C的方程;
(2)若F在线段上,P是的中点,证明:.
设函数,若不等式对任意a,,且恒成立,求实数x的取值范围.
在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C相交于两点A,B,求线段的长.
已知点,在矩阵对应的变换作用下变为点.
(1)求a和b的值;
(2)若直线l在M对应的变换作用下变为直线,求直线l的方程.
已知等差数列的前n项和,且满足,,数列是首项为2,公比为q()的等比数列.
(1)求数列的通项公式;
(2)设正整数k,t,r成等差数列,且,若,求实数q的最大值;
(3)若数列满足,,其前n项和为,当时,是否存在正整数m,使得恰好是数列中的项?若存在,求岀m的值;若不存在,说明理由.