设,已知函数,.
(1)若是的零点,求不等式的解集:
(2)当时,,求的取值范围.
在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数).
(1)求与的交点的直角坐标;
(2)求上的点到直线的距离的最大值.
已知函数,.
(1)当,时,求函数在处的切线方程,并求函数的最大值;
(2)若函数的两个零点分别为,,且,求证:.
已知经过抛物线的焦点的直线与抛物线相交于两点,直线分别交直线于点.
(1)求证:为定值;
(2)求的最小值.
如图,已知平面,四边形为矩形,四边形为直角梯形,,AB∥CD,,.
(1)求证:平面;
(2)求三棱锥的体积.
由于受大气污染的影响,某工程机械的使用年限(年)与所支出的维修费用(万元)之间,有如下统计资料:
(年) | 2 | 3 | 4 | 5 | 6 |
(万元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
假设与之间呈线性相关关系.
(1)求维修费用(万元)与设备使用年限(年)之间的线性回归方程;(精确到0.01)
(2)使用年限为8年时,维修费用大概是多少?
参考公式:回归方程,其中,.