将参数方程,(,为参数)化为普通方程______________.
已知函数.
(1)解关于x不等式;
(2)对任意正数a,b满足,求使得不等式恒成立的x的取值集合M.
选修4-4:坐标系与参数方程
已知直线的参数方程为(其中为参数,为常数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于点两点.
(1)若,求实数的值;
(2)若,点坐标为,求的值.
已知函数().
(1)讨论的单调性;
(2)若对任意的,,恒有成立,求实数m的取值范围.
已知椭圆C:()的左、右焦点分别为,且椭圆上存在一点P,满足.,
(1)求椭圆C的标准方程;
(2)已知A,B分别是椭圆C的左、右顶点,过的直线交椭圆C于M,N两点,记直线,的交点为T,是否存在一条定直线l,使点T恒在直线l上?
为推行“高中新课程改革”,某数学老师分别用“传统教学”和“新课程”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果.期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于120分者为“成绩优良”.
分数 | |||||
甲班频数 | 7 | 5 | 4 | 3 | 1
|
乙班频数 | 1 | 2 | 5 | 5 | 7 |
(1)从以上统计数据填写下面列联表,并判断能否犯错误的频率不超过0.01的前提下认为“成绩优良与教学方式有关”?
| 甲班 | 乙班 | 总计 |
成绩优良 |
|
|
|
成绩不优良 |
|
|
|
总计 |
|
|
|
P() | 0.10 | 0.05 | 0.025 | 0.010 |
2.706 | 3.841 | 5.024 | 6.635 |
附:,其中.临界值表如上表:
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.