满分5 > 高中数学试题 >

已知椭圆的右焦点为,是椭圆上一点,轴,. (1)求椭圆的标准方程; (2)若直线...

已知椭圆的右焦点为是椭圆上一点,轴,.

1)求椭圆的标准方程;

2)若直线与椭圆交于两点,线段的中点为为坐标原点,且,求面积的最大值.

 

(1);(2). 【解析】 (1)设椭圆的焦距为,可得出点在椭圆上,将这个点的坐标代入椭圆的方程可得出,结合可求出的值,从而可得出椭圆的标准方程; (2)分直线的斜率不存在与存在两种情况讨论,在轴时,可得出,从而求出的面积;在直线斜率存在时,设直线的方程为,设点、,将直线的方程与椭圆方程联立,利用韦达定理结合,得出,计算出与的高,可得出面积的表达式,然后可利用二次函数的基本性质求出面积的最大值. (1)设椭圆的焦距为,由题知,点,, 则有,,又,,, 因此,椭圆的标准方程为; (2)当轴时,位于轴上,且, 由可得,此时; 当不垂直轴时,设直线的方程为,与椭圆交于,, 由,得. ,,从而 已知,可得. . 设到直线的距离为,则, . 将代入化简得. 令, 则. 当且仅当时取等号,此时的面积最大,最大值为. 综上:的面积最大,最大值为.
复制答案
考点分析:
相关试题推荐

根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

(1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,参考数据:.

回归方程中斜率和截距的最小二乘估计公式分别为:

 

查看答案

如图,在四棱锥中,平面底面,其中底面为等腰梯形,的中点.

1)证明:平面

2)求二面角的余弦值.

 

查看答案

中,边上的中点.

1)求的值;

2)若,求

 

查看答案

已知首项为的等比数列的前项和为.

1)求的通项公式;

2)若,求数列的前项和.

 

查看答案

在直三棱柱中,,,设其外接球的球心为,且球的表面积为,则的面积为__________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.