某购物网站对在7座城市的线下体验店的广告费指出
万元和销售额
万元的数据统计如下表:
城市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合y与x关系,求y关于x的线性回归方程.
(2)若用对数函数回归模型拟合y与x的关系,可得回归方程
,经计算对数函数回归模型的相关指数约为0.95,请说明选择哪个回归模型更合适,并用此模型预测A城市的广告费用支出8万元时的销售额.
参考数据:
,
,
,
,
,
.
参考公式:
,
相关指数:
(注意:
与
公式中的相似之处)
在
中,角
、
、
的对边分别为
、
、
,已知
.
(1)求角
的大小;
(2)若
,点
在
边上,且
,
,求
边的长.
已知数列
是等比数列,
,
是
和
的等差中项.
(1)求数列
的通项公式;
(2)设
,求数列
的前
项和
.
为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,将这100人的年龄数据分成5组:![]()
![]()
![]()
![]()
,整理得到如图所示的频率分布直方图.

(1)由频率分布直方图,计算出各年龄段的人数,并估计这100人年龄的众数、中位数和平均数;(该小题不用写解题过程,请在答题卷上直接写出答案
(2)支持“延迟退休”的人数如下表所示,根据以上统计数据填写下面的2×2列联表,据此表,能否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政”的不支持态度存在差异?
附:
,其中
.
年龄 |
|
|
|
|
|
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
已知函数
.
(Ⅰ)求曲线
在点
处的切线方程;
(Ⅱ)直线
为曲线
的切线,且经过原点,求直线
的方程及切点坐标.
已知函数f(x)=x2
,,若函数在
上是单调递增的,则实数
的取值范围为___.
