已知,,为正数,且满足.
(1)证明:.
(2)证明:.
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)已知为锐角,直线与曲线的交点为(异于极点),与曲线的交点为,若,求的直角坐标方程.
已知椭圆的长轴长为,焦距为2,抛物线的准线经过C的左焦点F.
(1)求C与M的方程;
(2)直线l经过C的上顶点且l与M交于P,Q两点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值.
已知函数.
(1)求的单调区间;
(2)若对恒成立,求的取值范围.
如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点,且.
(1)证明:平面;
(2)若侧面与底面垂直,求五面体的体积.
在中老年人群体中,肠胃病是一种高发性疾病某医学小组为了解肠胃病与运动之间的联系,调查了50位中老年人每周运动的总时长(单位:小时),将数据分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6组进行统计,并绘制出如图所示的柱形图.
图中纵轴的数字表示对应区间的人数现规定:每周运动的总时长少于14小时为运动较少.
每周运动的总时长不少于14小时为运动较多.
(1)根据题意,完成下面的2×2列联表:
| 有肠胃病 | 无肠胃病 | 总计 |
运动较多 |
|
|
|
运动较少 |
|
|
|
总计 |
|
|
|
(2)能否有99.9%的把握认为中老年人是否有肠胃病与运动有关?
附:K2(n=a+b+c+d)
P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |