已知椭圆的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点,为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.
已知函数在点处的切线为.
(1)求函数的解析式;
(2)若,且存在,使得成立,求的最小值.
如图,四棱锥的底面是正方形,底面,,点分别在棱上,且平面.
(1)求证:;
(2)求直线与平面所成角的正弦值.
(3)求二面角的余弦值
近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.
(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对服务满意之间有关系”?
| 对服务满意 | 对服务不满意 | 合计 |
对商品满意 | 80 |
|
|
对商品不满意 |
| 10 |
|
合计 |
|
| 200 |
(2)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量,求的分布列和数学期望.
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
的观测值:(其中).
如图,在中,,点在边上,且.
(Ⅰ)求的长;(Ⅱ)求的值.
函数且的图象恒过定点A,若点A在直线上(其中m,n>0),则的最小值等于__________.