在中,,,则为( )
A. B. C. D.
已知函数,.
(1)当时,求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范围.
在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为,圆与直线交于,两点,点的直角坐标为.
(Ⅰ)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;
(Ⅱ)求的值.
已知椭圆的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点,为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.
已知函数在点处的切线为.
(1)求函数的解析式;
(2)若,且存在,使得成立,求的最小值.
如图,四棱锥的底面是正方形,底面,,点分别在棱上,且平面.
(1)求证:;
(2)求直线与平面所成角的正弦值.
(3)求二面角的余弦值