演绎推理“因为对数函数且是增函数,而函数是对数函数,所以是增函数”所得结论错误的原因是( )
A.大前提错误 B.小前提都错误
C.推理形式错误 D.大前提和小前提都错误
已知,且
(1)证明:
(2)若恒成立,求的取值范围
平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为
(1)写出曲线的极坐标方程和曲线的直角坐标方程;
(2)若射线平分曲线,且与曲线交于点,曲线上的点满足,求.
已知函数.
(1)讨论的单调性;
(2)当时,若函数与的图象有且仅有一个交点,求的值(其中表示不超过的最大整数,如).
参考数据:.
已知椭圆的短轴顶点分别为,且短轴长为为椭圆上异于的任意-一点,直线的斜率之积为
(1)求椭圆的方程;
(2)设为坐标原点,圆的切线与椭圆C相交于两点,求面积的最大值.
为了了解居民的家庭收入情况,某社区组织工作人员从该社区的居民中随机抽取了100户家庭进行问卷调查.经调查发现,这些家庭的月收入在3000元到10000元之间,根据统计数据作出如图所示的频率分布直方图:
(1)经统计发现,该社区居民的家庭月收入(单位:百元)近似地服从正态分布,其中近似为样本平均数.若落在区间的左侧,则可认为该家庭属“收入较低家庭”,社区将联系该家庭,咨询收入过低的原因,并采取相应措施为该家庭提供创收途径.若该社区家庭月收入为4100元,试判断家庭是否属于“收入较低家庭”,并说明原因;
(2)将样本的频率视为总体的概率.
①从该社区所有家庭中随机抽取户家庭,若这户家庭月收入均低于8000元的概率不小于50%,求的最大值;
②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调查的家庭制定了赠送购物卡的活动,赠送方式为:家庭月收入低于的获赠两次随机购物卡,家庭月收入不低于的获赠一次随机购物卡;每次赠送的购物卡金额及对应的概率分别为:
赠送购物卡金额(单位:元) | 100 | 200 | 300 |
概率 |
则家庭预期获得的购物卡金额为多少元?(结果保留整数)