满分5 > 高中数学试题 >

已知函数. (1)当时,证明:对任意的,都有. (2)若对任意的,恒成立,求实数...

已知函数.

1)当时,证明:对任意的,都有.

2)若对任意的恒成立,求实数a的取值范围

 

(1)证明见解析(2) 【解析】 (1)当时,设,只要证明最小值大于等于0即可. (2)若对任意的,,恒成立,,,在此基础上分析区间,增减性,进而得出最小值,让其大于等于1,即可求出答案. (1)当时,设, , 设, (), 所以在上是增函数, , 所以在上是增函数, 即, 对任意的,都有. (2)若对任意的,恒成立,, ,(其中增函数) ①当时,,, 在上,是增函数,符合题意, ②当时,存在唯一,,此时, 在上,;在,, , 设,,在上是增函数, , 所以, 在上,是增函数, 解得, 综合①②,.
复制答案
考点分析:
相关试题推荐

如图,在四棱锥中,底面是平行四边形,底面EF分别为的中点,点M在线段.

1)求证:面

2)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

 

查看答案

已知数列的前n项和满足),且.

1)求数列的通项公式;

2)令是数列的前n项和,证明:.

 

查看答案

直三棱柱(侧棱与底面垂直的棱柱)中,D中点,F为线段的中点.

1)若M中点,求证:

2)求二面角的余弦值.

 

查看答案

已知中,角 所对的边分别为 ,且满足 .

(1)求角的大小;

(2)的周长为,面积为,求三角形的三边长.

 

查看答案

已知关于x的不等式)的解集为.

1)求m的值;

2)若abc均为正数,且,求的最小值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.