我校有高一学生850人,高二学生900人,高三学生1200人,学校团委欲用分层抽样的方法抽取30名学生进行问卷调查,则下列判断正确的是( )
A.高一学生被抽到的概率最大
B.高二学生被抽到的概率最大
C.高三学生被抽到的概率最大
D.每名学生被抽到的概率相等
下列问题中,最适合用分层抽样方法抽样的是( )
A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈
B.从10台冰箱中抽出3台进行质量检查
C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量
D.从50个零件中抽取5个做质量检验
已知函数y=f1(x),y=f2(x),定义函数f(x).
(1)设函数f1(x)=x+3,f2(x)=x2﹣x,求函数y=f(x)的解析式;
(2)在(1)的条件下,g(x)=mx+2(m∈R),函数h(x)=f(x)﹣g(x)有三个不同的零点,求实数m的取值范围;
(3)设函数f1(x)=x2﹣2,f2(x)=|x﹣a|,函数F(x)=f1(x)+f2(x),求函数F(x)的最小值.
已知奇函数f(x),函数g(θ)=cos2θ+2sinθ,θ∈[m,].m,b∈R.
(1)求b的值;
(2)判断函数f(x)在[0,1]上的单调性,并证明;
(3)当x∈[0,1]时,函数g(θ)的最小值恰为f(x)的最大值,求m的取值范围.
已知向量(2sinx,cosx),(cosx,2cosx).
(1)若x≠kπ,k∈Z,且,求2sin2x﹣cos2x的值;
(2)定义函数f(x),求函数f(x)的单调递减区间;并求当x∈[0,]时,函数f(x)的值域.
在平面直角坐标系xOy中,已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边上有一点P的坐标是(3a,a),其中a≠0.
(1)求cos(α)的值;
(2)若tan(2α+β)=1,求tanβ的值.