某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
| 满意 | 不满意 |
男顾客 | 40 | 10 |
女顾客 | 30 | 20 |
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
在中(图1),,,为线段上的点,且.以为折线,把翻折,得到如图2所示的图形,为的中点,且,连接.
(1)求证:;
(2)求.
的内角的对边分别为,已知,.
(1)求角C;
(2)延长线段到点D,使,求周长的取值范围.
已知函数,若正实数a,b满足,则的最小值为_______.
已知三棱锥P-ABC中,是面积为的等边三角形,,则当点C到平面PAB的距离最大时,三棱锥P-ABC外接球的表面积为_______.
若等差数列和等比数列满足,,则________.