满分5 > 高中数学试题 >

已知a∈R,函数f(x)=(-x2+ax)ex(x∈R). (1)当a=2时,求...

已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

 

(1)见解析(2)[,+∞) 【解析】 (1)求出a=2的函数f(x)的导数,令导数大于0,得增区间,令导数小于0,得减区间; (2)求出f(x)的导数,由题意可得f′(x)≥0在(﹣1,1)上恒成立,即为a﹣x2+(a﹣2)x≥0,即有x2﹣(a﹣2)x﹣a≤0,再由二次函数的图象和性质,得到不等式组,即可解得a的范围. (1)a=2时,f(x)=(﹣x2+2x)•ex的导数为 f′(x)=ex(2﹣x2), 由f′(x)>0,解得﹣<x<, 由f′(x)<0,解得x<﹣或x>. 即有函数f(x)的单调减区间为(﹣∞,﹣),(,+∞), 单调增区间为(﹣,). (2)函数f(x)=(﹣x2+ax)•ex的导数为 f′(x)=ex[a﹣x2+(a﹣2)x], 由函数f(x)在(﹣1,1)上单调递增, 则有f′(x)≥0在(﹣1,1)上恒成立, 即为a﹣x2+(a﹣2)x≥0,即有x2﹣(a﹣2)x﹣a≤0, 则有1+(a﹣2)﹣a≤0且1﹣(a﹣2)﹣a≤0, 解得a≥. 则有a的取值范围为[,+∞).
复制答案
考点分析:
相关试题推荐

设函数,其中向量.

1)求函数的最小正周期和在上的单调增区间;

2)当的最大值为,求的值.

 

查看答案

如图,在三棱锥中,平面平面,三角形为等边三角形, ,且的中点,的中点.

1)求证:平面

2)求证:平面平面

3)求三棱锥的体积.

 

查看答案

已知等差数列中,为其前项和,

1)求数列的通项公式;

2)设,求数列的前项和.

 

查看答案

中,内角所对的边分别为,且

(1)求角的大小;

(2)若,求的面积.

 

查看答案

已知平面α,β,γ是空间中三个不同的平面,直线l,m是空间中两条不同的直线,若α⊥γ,γ∩α=m,γ∩β=l,l⊥m,则

①m⊥β;②l⊥α;③β⊥γ;④α⊥β.

由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.