电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | ||||||
好评率 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
A. B. C. D.
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm的概率;
(3)从样本中身高在180~190cm的男生中任选2人,求至少有1人身高在185~190cm的概率.
公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩(单位:分)如下:
男:165 166 168 172 173 174 175 176 177 182 184 185 193 194
女:168 177 178 185 186 192
公司规定:成绩在180分以上(包括180分)者到“甲部门”工作;180分以下者到“乙部门”工作.
(1)求男生成绩的中位数及女生成绩的平均数.
(2)如果用分层随机抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?
某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.21,0.23,0.25,0.28,计算这个射手在一次射击中:
(1)射中10环或7环的概率; (2)不够7环的概率.
从一批草莓中,随机抽取个,其重量(单位:克)的频率分布表如下:
分组(重量) |
|
|
|
|
频数(个) |
|
|
|
|
已知从个草莓中随机抽取一个,抽到重量在的草莓的概率为.
(1)求出,的值;
(2)用分层抽样的方法从重量在和的草莓中共抽取个,再从这个草莓中任取个,求重量在和中各有个的概率.