( )
A. B. C. D.
已知椭圆的左右焦点分别为,是椭圆短轴的一个顶点,且是面积为的等腰直角三角形.
(1)求椭圆的标准方程;
(2)已知直线:与椭圆交于不同的,两点,若椭圆上存在点,使得四边形恰好为平行四边形,求直线与坐标轴围成的三角形面积的最小值.
已知点,,直线:,设圆的半径为,圆心在直线上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.
一工厂对某条生产线加工零件所花费时间进行统计,得到如下表的数据:
零件数x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(分钟) | 62 | 68 | 75 | 82 | 88 |
(1)从加工时间的五组数据中随机选择两组数据,求该两组数据中至少有一组数据小于加工时间的均值的概率;
(2)若加工时间与零件数具有相关关系,求关于的回归直线方程;若需加工个零件,根据回归直线预测其需要多长时间.
(,)
某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(如图(1))和女生身高情况的频率分布直方图(如图(2)).已知图(1)中身高在170~175cm的男生有16名.
(1)试问在抽取的学生中,男、女生各有多少名?
| 身高≥170cm | 身高<170cm | 总计 |
男生 |
|
|
|
女生 |
|
|
|
总计 |
|
|
|
(2)根据频率分布直方图,完成下面的2×2列联表,并判断能有多大(百分数)的把握认为身高与性别有关?
附:参考公式和临界值表
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线与的左、右两支分别交于A,B两点.若 |AB|: |BF2 |: |AF2|=3:4 : 5,则双曲线的离心率为 .