设集合,,则下列关系中正确的是( )
A. B. C. D.
已知函数的反函数的图象经过点,函数为奇函数.
(1)求函数的解析式;
(2)求函数的零点;
(3)设的反函数为,若关于的不等式在区间上恒成立,求正实数的取值范围.
已知是整数,幂函数在上是单调递增函数.
(1)求幂函数的解析式;
(2)作出函数的大致图象;
(3)写出的单调区间,并用定义法证明在区间上的单调性.
甲乙两地的高速公路全长166千米,汽车从甲地进入该高速公路后匀速行驶到乙地,车速(千米/时).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为,固定部分为220元.
(1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?(结果保留整数)
已知函数.
求:(1)函数的定义域;
(2)判断函数的奇偶性,并加以证明.
已知函数在区间上的最大值比最小值大,求实数的值.