某射击运动员进行打靶练习,已知打十枪每发的靶数为9,10,7,8,10,10,6,8,9,7,设其平均数为
,中位数为
,众数为
,则有( )
A.
B.![]()
C.
D.![]()
从某中学抽取
名同学,得到他们的数学成绩如下:
(单位:分),则可得这
名同学数学成绩的众数、中位数分别为( )
A.
B.
C.
D.![]()
设各项均为正数的数列
满足
(
,
为常数),其中
为数列
的前
项和.
(1)若
,
,求证:
是等差数列;
(2)若
,
,求数列
的通项公式;
(3)若
,求
的值.
已知函数
,其中
为正实数.
(1)若函数
在
处的切线斜率为2,求
的值;
(2)求函数
的单调区间;
(3)若函数
有两个极值点
,求证:![]()
如图,圆C与x轴相切于点T(2,0),与y轴的正半轴相交于A,B两点(A在B的上方),且AB=3.

(1)求圆C的方程;
(2)直线BT上是否存在点P满足PA2+PB2+PT2=12,若存在,求出点P的坐标,若不存在,请说明理由;
(3)如果圆C上存在E,F两点,使得射线AB平分∠EAF,求证:直线EF的斜率为定值.
某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量
(万只)与时间
(年)(其中
)的关系为
.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值
(其中
为常数,且
)来进行生态环境分析.
(1)当
时,求比值
取最小值时
的值;
(2)经过调查,环保部门发现:当比值
不超过
时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数
的取值范围.(
为自然对数的底,
)
