在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(为实数).
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)当时,设、分别为曲线和曲线上的动点,求的最小值.
已知矩阵的一个特征值及对应的一个特征向量.求矩阵的逆矩阵.
已知数列的各项均为正数,前项和满足;数列是等比数列,前项和为.
(1)求数列的通项公式;
(2)已知等比数列满足,,,求数列前项和为;
(3)若,且等比数列的公比,若存在,使得,试求的值.
已知函数,.
(1)当时,求函数在上的单调性;
(2)是否存在实数,使得函数在上的最小值为3,若存在,求出的值,若不存在,请说明理由;
(3)当,求证:.
已知椭圆:的离心率为,点在椭圆上,为坐标原点.
(1)求椭圆的标准方程;
(2)已知、为椭圆上不同的两点.①设线段的中点为点,证明:直线、的斜率之积为定值;②若、两点满足,当的面积最大时,求的值.
如图,已知扇形是一个观光区的平面示意图,其中扇形半径为10米,,为了便于游客观光和旅游,提出以下两种设计方案:
(1)如图1,拟在观光区内规划一条三角形形状的道路,道路的一个顶点在弧上,另一顶点在半径上,且,求周长的最大值;
(2)如图2,拟在观光区内规划一个三角形区域种植花卉,三角形花圃的一个顶点在弧上,另两个顶点、在半径、上,且,,求花圃面积的最大值.