命题“所有奇数的立方是奇数”的否定是( )
A.所有奇数的立方不是奇数
B.不存在一个奇数,它的立方是偶数
C.存在一个奇数,它的立方是偶数
D.不存在一个奇数,它的立方是奇数
直线
的倾斜角是( )
A.
B.
C.
D.![]()
在平面直角坐标系
中,四个点
,
,
,
中有3个点在椭圆
:
上.
(1)求椭圆
的标准方程;
(2)过原点的直线与椭圆
交于
,
两点(
,
不是椭圆
的顶点),点
在椭圆
上,且
,直线
与
轴、
轴分别交于
、
两点,设直线
,
的斜率分别为
,
,证明:存在常数
使得
,并求出
的值.
已知三棱锥P-ABC(如图1)的展开图如图2,其中四边形ABCD为边长等于
的正方形,△ABE和△BCF均为正三角形,在三棱锥P-ABC中.

(1)证明:平面PAC⊥平面ABC;
(2)若M,N分别是AP,BC的中点,请判断三棱锥M-BCP和三棱锥N-APC体积的大小关系并加以证明.
已知圆C:x2+y2+2x﹣4y+3=0.
(1)若直线l:x+y=0与圆C交于A,B两点,求弦AB的长;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
已知抛物线
焦点为
,准线与
轴的交点为
.
(Ⅰ)抛物线
上的点P满足
,求点
的坐标;
(Ⅱ)设点
是抛物线
上的动点,点
是
的中点,
,求点
的轨迹方程.
