满分5 > 高中数学试题 >

在平面直角坐标系中,四个点,,,中有3个点在椭圆:上. (1)求椭圆的标准方程;...

在平面直角坐标系中,四个点中有3个点在椭圆.

1)求椭圆的标准方程;

2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线轴、轴分别交于两点,设直线的斜率分别为,证明:存在常数使得,并求出的值.

 

(1);(2)证明见解析,. 【解析】 (1)根据椭圆的对称性可知,关于轴对称的,在椭圆上.分类讨论,当在椭圆上时,当在椭圆上时,分别求解,根据确定,即可. (2)设,,由题意可知,,设直线的方程为,与椭圆联立,变形整理得,确定,,从而,直线的方程为,分别令、确定点与点的坐标,求直线,的斜率分别为,,求解即可. (1)∵,关于轴对称. ∴这2个点在椭圆上,即① 当在椭圆上时,② 由①②解得,. 当在椭圆上时,③ 由①③解得,. 又 ∴, ∴椭圆的方程为. (2)设,,则. 因为直线的斜率,又. 所以直线的斜率. 设直线的方程为,由题意知,. 由可得, 所以,. 由题意知,所以,所以直线的方程为,令,得,即,可得, 令,得,即,可得, 所以,即,因此,存在常数使得结论成立.
复制答案
考点分析:
相关试题推荐

在梯形中,的中点,线段交于点(如图1.沿折起到的位置,使得二面角为直二面角(如图2.

1)求证:平面

2)线段上是否存在点,使得与平面所成角的正弦值为?若存在,求出的值;若不存在,请说明理由.

 

查看答案

已知圆Cx2+y2+2x4y+30

1)若直线lx+y0与圆C交于AB两点,求弦AB的长;

2)从圆C外一点Px1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM||PO|,求使得|PM|取得最小值的点P的坐标.

 

查看答案

已知抛物线焦点为,准线与轴的交点为.

(Ⅰ)抛物线上的点P满足,求点的坐标;

(Ⅱ)设点是抛物线上的动点,点的中点,,求点的轨迹方程.

 

查看答案

某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

1)根据频率分布直方图计算图中各小长方形的宽度;

2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

1

3

4

 

7

 

表中的数据显示,xy之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.

回归直线的斜率和截距的最小二乘法估计公式分别为.

 

查看答案

已知,命题,命题.

1)当时,若命题为真,求的取值范围;

2)若的充分条件,求的取值范围.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.