给出下列3种说法:
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;
②做7次抛硬币的试验,结果3次出现正面,因此,抛一枚硬币出现正面的概率是;
③随机事件的发生的频率就是这个随机事件发生的概率.
其中正确说法的个数是( )
A.0 B.1 C.2 D.3
气象台预报“本市明天降雨概率是70%”,下列说法正确的是( )
A.本市明天将有70%的地区降雨 B.本市有天将有70%的时间降雨
C.明天出行不带雨具淋雨的可能性很大 D.明天出行不带雨具肯定要淋雨
经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2 没有击中,用3,4,5,6,7,8,9 表示击中,以 4个随机数为一组, 代表射击4次的结果,经随机模拟产生了20组随机数:
7525,0293,7140,9857,0347,4373,8638,7815,1417,5550
0371,6233,2616,8045,6011,3661,9597,7424,7610,4281
根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为( )
A. B. C. D.
抛掷两枚质地均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每组中数字的个数为( )
A.1 B.2 C.10 D.12
某市四所重点中学进行高二期中联考,共有5000名学生参加,为了了解数学学科的学习情况,现从中随机地抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
① | ② | |
| 0.050 | |
| 0.200 | |
36 | 0.300 | |
| 0.275 | |
12 | ③ | |
| 0.050 | |
合计 |
| ④ |
(1)根据上面的频率分布表,推出①②③④处的数字分别为 , , , .
(2)补全上的频率分布直方图.
(3)根据题中的信息估计总体:
①成绩在120分及以上的学生人数;
②成绩在的频率.
某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,下表是统计结果:
贫困地区
参加测试的人数 | 30 | 50 | 100 | 200 | 500 | 800 |
得60分以上的人数 | 16 | 27 | 52 | 104 | 256 | 402 |
得60分以上的频率 |
|
|
|
|
|
|
发达地区
参加测试的人数 | 30 | 50 | 100 | 200 | 500 | 800 |
得60分以上的人数 | 17 | 29 | 56 | 111 | 276 | 440 |
得60分以上的频率 |
|
|
|
|
|
|
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率(结果精确到0.001);
(2)求两个地区参加测试的儿童得60分以上的概率.