满分5 > 高中数学试题 >

已知,且. (1)求证:; (2)当时,不等式恒成立,求的取值范围.

已知,且

(1)求证:

(2)当时,不等式恒成立,求的取值范围.

 

(1)见证明;(2). 【解析】 (1)由柯西不等式即可证明; (2)可先计算的最小值,再分,,三种情况讨论即可得到答案. 【解析】 (1)由柯西不等式得. ∴,当且仅当时取等号. ∴; (2), 要使得不等式恒成立,即可转化为, 当时,,可得, 当时,,可得, 当时,,可得, ∴的取值范围为:.
复制答案
考点分析:
相关试题推荐

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设Ml3C的交点,求M的极径.

 

查看答案

已知函数.

(Ⅰ)求证:函数有唯一零点;

(Ⅱ)若对任意恒成立,求实数的取值范围.

 

查看答案

已知点MN分别是椭圆C)的左顶点和上顶点,F为其右焦点,,椭圆的离心率为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设不过原点O的直线与椭圆C相交于AB两点,若直线OAABOB的斜率成等比数列,求面积的取值范围.

 

查看答案

已知四棱锥PABCD的三视图如下图所示,E是侧棱PC上的动点.

1)求证:BD⊥AE

2)若点EPC的中点,求二面角DAEB的大小.

 

查看答案

“绿水青山就是金山银山”的理念越来越深入人心,据此,某网站调查了人们对生态文明建设的关注情况,调查数据表明,参与调查的人员中关注生态文明建设的约占80%.现从参与调查的关注生态文明建设的人员中随机选出200人,并将这200人按年龄(单位:岁)分组:第1[1525),第2[2535),第3[3545),第4[4555),第5[5565],得到的频率分布直方图如图所示.

(Ⅰ)求这200人的平均年龄(每一组用该组区间的中点值作为代表)和年龄的中位数(保留一位小数);

(Ⅱ)现在要从年龄在第12组的人员中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求抽取的3人中恰有2人的年龄在第2组中的概率;

(Ⅲ)若从所有参与调查的人(人数很多)中任意选出3人,设这3人中关注生态文明建设的人数为X,求随机变量X的分布列与数学期望.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.