满分5 > 高中数学试题 >

已知函数. (1)当时,求不等式的解集; (2)若,,使得成立,求实数的取值范围...

已知函数.

(1)当时,求不等式的解集;

(2)若,使得成立,求实数的取值范围.

 

(1) (2) 【解析】 (1)利用零点分段法去绝对值,将转化为分段函数来求解出不等式的解集.(2)由题意得,利用零点分段法求得函数的最小值,利用绝对值不等式求得的最小值,由此列不等式,求得的取值范围. 【解析】 (1)当时,原不等式为, ∴或或, ∴或或, ∴原不等式的解集为, (2)由题意得, ∵,∴, ∵, ∴, ∴,∴, ∴的取值范围。
复制答案
考点分析:
相关试题推荐

已知在直角坐标系中,曲线的参数方程为(其中为参数),点在曲线上运动,动点满足,其轨迹为曲线.以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求曲线的普通方程;

(2)若点分别是射线与曲线的公共点,求的最大值.

 

查看答案

已知函数为常数)在内有两极值点

1)求实数a的取值范围;

2)求证:.

 

查看答案

已知椭圆左顶点为,上顶点为,直线的斜率为

(Ⅰ)求椭圆的离心率;

(Ⅱ)直线与椭圆交于两点,与轴交于点,以线段为对角线作正方形,若

i)求椭圆方程;

ii)若点在直线上,且满足,求使得最长时,直线的方程.

 

查看答案

如图,在四棱锥中,底面是直角梯形,是正三角形,的中点.

(1)证明:

(2)求直线与平面所成角的正弦值.

 

查看答案

十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年位农民的年收人并制成如下频率分布直方图:

(1)根据频率分布直方图,估计位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

(2)由频率分布直方图,可以认为该贫困地区农民年收入服从正态分布,其中近似为年平均收入近似为样本方差,经计算得.利用该正态分布,求:

(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了位农民。若每个农民的年收人相互独立,问:这位农民中的年收入不少于千元的人数最有可能是多少?

附:参考数据与公式

则①;②;③.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.