已知椭圆()经过与两点.
(1)求椭圆的方程;
(2)过原点的直线与椭圆交于两点,椭圆上一点满足,求证:为定值.
已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且满足.
(1)求动点的轨迹的方程;
(2)过点作直线与轨迹交于,两点,为直线上一点,且满足,若的面积为,求直线的方程.
如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB= ,点E是棱PB的中点.
(1)求异面直线EC与PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
已知各项不为零的数列的前项和为,且满足.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.
的内角所对的边分别为,且满足.
(Ⅰ)求的值;
(Ⅱ)若外接圆半径为,求的面积.
已知,p:;q:不等式对任意实数x恒成立.
(1)若q为真命题,求实数m的取值范围;
(2)如果“”为真命题,且“”为假命题,求实数m的取值范围.