满分5 > 高中数学试题 >

如图,正三棱柱中,各棱长均为4, 、分别是,的中点. (1)求证:平面; (2)...

如图,正三棱柱中,各棱长均为4,    分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的余弦值.

 

(1)见解析 ;(2) 【解析】 (1)根据几何关系得到,再由线面垂直得到,进而得到线面垂直;(2)由(1)可知平面,为与平面所成的角,由三角形性质得到由等面积法可得,即可求解. (1)证明:因为且为的中点,所以,又在正三棱柱中,因为平面平面,平面,且平面平面, 所以平面,因为平面,所以, 因为,分别为,的中点,所以,又因为,,所以,所以,, 所以,,所以,又因为平面,平面,,所以平面. (2)设,由(1)可知平面,所以为斜线在平面内的射影,所以为与平面所成的角,由题可知, 所以为等腰三角形,作于,则为的中点,所以,由等面积法可知,在中,,所以, 所以直线与平面所成的角的余弦值为.
复制答案
考点分析:
相关试题推荐

某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为,样本数据分组为.

1)求直方图中a的值;

2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;

3)求该校学生上学路上所需的平均时间.

 

查看答案

设等差数列{an}的前n项和为Sn,若S9=81a3+a5=14

1)求数列{an}的通项公式;

2)设bn=,若{bn}的前n项和为Tn,证明:Tn

 

查看答案

已知棱长为1的正方体ABCDA1B1C1D1中,EFM分别是线段ABADAA1的中点,又PQ分别在线段A1B1A1D1上,且A1PA1Qx(0<x<1).设平面MEF平面MPQ

l,现有下列结论:

l平面ABCD

lAC

直线l与平面BCC1B1不垂直;

x变化时,l不是定直线.

其中不成立的结论是________.(写出所有不成立结论的序号)

 

查看答案

已知ABCD是同一球面上的四个点,其中是正三角形,平面ABC,则该球的体积为_________.

 

查看答案

过圆上一点作圆的切线, 则该切线的方程为______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.