满分5 > 高中数学试题 >

已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),...

已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.

(Ⅰ)求C的方程;

(Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

 

(1) . (2)证明见解析. 【解析】 试题(1)根据,两点关于y轴对称,由椭圆的对称性可知C经过,两点.另外由知,C不经过点P1,所以点P2在C上.因此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B的斜率分别为k1,k2,再设直线l的方程,当l与x轴垂直时,通过计算,不满足题意,再设l:(),将代入,写出判别式,利用根与系数的关系表示出x1+x2,x1x2,进而表示出,根据列出等式表示出和的关系,从而判断出直线恒过定点. 试题解析:(1)由于,两点关于y轴对称,故由题设知C经过,两点. 又由知,C不经过点P1,所以点P2在C上. 因此,解得. 故C的方程为. (2)设直线P2A与直线P2B的斜率分别为k1,k2, 如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,). 则,得,不符合题设. 从而可设l:().将代入得 由题设可知. 设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=. 而 . 由题设,故. 即. 解得. 当且仅当时,,欲使l:,即, 所以l过定点(2,)
复制答案
考点分析:
相关试题推荐

已知以点C为圆心的圆经过点,且圆心在直线上.

(1)求圆C的方程;

(2)设点P在圆C上,求△PAB的面积的最大值.

 

查看答案

如图,正三棱柱中,各棱长均为4,    分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的余弦值.

 

查看答案

某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为,样本数据分组为.

1)求直方图中a的值;

2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;

3)求该校学生上学路上所需的平均时间.

 

查看答案

设等差数列{an}的前n项和为Sn,若S9=81a3+a5=14

1)求数列{an}的通项公式;

2)设bn=,若{bn}的前n项和为Tn,证明:Tn

 

查看答案

已知棱长为1的正方体ABCDA1B1C1D1中,EFM分别是线段ABADAA1的中点,又PQ分别在线段A1B1A1D1上,且A1PA1Qx(0<x<1).设平面MEF平面MPQ

l,现有下列结论:

l平面ABCD

lAC

直线l与平面BCC1B1不垂直;

x变化时,l不是定直线.

其中不成立的结论是________.(写出所有不成立结论的序号)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.