满分5 > 高中数学试题 >

在直角坐标系中,曲线的参数方程为(为参数).坐标原点为极点,轴的正半轴为极轴,取...

在直角坐标系中,曲线的参数方程为为参数).坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为

(1)求曲线的普通方程和极坐标方程;

2)设射线与曲线交于点,与直线交于点,求线段的长.

 

(1) (2) 【解析】 (1)结合三角函数的基本关系消去参数可得普通方程,结合公式,可得极坐标方程; (2)分别联立极坐标方程,求得交点的极径,从而可得线段的长. 【解析】 (1)由题意得, ∴曲线的普通方程为. ∵,, ∴代入可得曲线的极坐标方程为. (2)把代入中, 可得, 解得﹐ 即点的极径, 由(1)易得, ∴.
复制答案
考点分析:
相关试题推荐

已知函数

(1)讨论函数的单调性;

(2)设,当时,证明:.

 

查看答案

已知椭圆的左右焦点分别为是椭圆短轴的一个顶点,并且是面积为的等腰直角三角形.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,过作与轴垂直的直线,已知点,问直线的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.

 

查看答案

在如图所示的五面体,四边形为菱形,中点.

 

(1)求证:平面;

(2)若平面平面,到平面的距离.

 

查看答案

某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值,若某住户某月用电量不超过度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过度,则超出部分按议价(单位:元/度)计费,未超出部分按平价计费.为确定的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).

1)若该市计划让全市的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值

2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达度的住户用电量保持不变;月用电量超过度的住户节省“超出部分”的,试估计全市每月节约的电量;

3)在(1)(2)条件下,若出台“阶梯电价”前后全市缴纳电费总额不变,求议价.

 

查看答案

如图,在中,角的对边分别为,且.

1)求的大小;

2)若外一点,,求四边形面积的最大值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.