在直角坐标系 中,曲线 的参数方程为 (为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .
(1)求直线和曲线的普通方程;
(2)已知点,且直线和曲线交于两点,求 的值
已知函数f(x)=ax2+lnx,g(x)=-bx,其中a,b∈R,设h(x)=f(x)-g(x),
(1)若f(x)在x=处取得极值,且f′(1)=g(-1)-2.求函数h(x)的单调区间;
(2)若a=0时,函数h(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:>1.
在国家积极推动美丽乡村建设的政策背景下,各地根据当地生态资源打造了众多特色纷呈的乡村旅游胜地.某人意图将自己位于乡村旅游胜地的房子改造成民宿用于出租,在旅游淡季随机选取100天,对当地已有的六间不同价位的民宿进行跟踪,统计其出租率(),设民宿租金为(单位:元/日),得到如图所示的数据散点图.
(1)若用“出租率”近似估计旅游淡季民宿每天租出去的概率,求租金为388元的那间民宿在淡季内的三天中至少有2天闲置的概率.
(2)①根据散点图判断,与哪个更适合于此模型(给出判断即可,不必说明理由)?根据判断结果求回归方程;
②若该地一年中旅游淡季约为280天,在此期间无论民宿是否出租,每天都要付出的固定成本,若民宿出租,则每天需要再付出的日常支出成本.试用①中模型进行分析,旅游淡季民宿租金约定为多少元时,该民宿在这280天的收益达到最大?
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为;.
参考数据:记,,,,
,,
,,
,.
已知数列是各项均为正数的等比数列,且
(1)数列 的通项公式;
(2)设数列满足,求该数列的前n项和.
如图,在几何体中,,四边形为矩形,平面平面,.
(1)求证:平面⊥平面;
(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.
已知三内角,,的对边分别为,,,点为边的中点,,.
(1)求;
(2)求面积的最大值.