已知函数为奇函数,,其中.
(1)若函数的图像过点,求实数和的值;
(2)若,试判断函数在上的单调性并证明;
(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数的取值范围.
已知圆心为C(4,3)的圆经过原点O.
(1)求圆C的方程;
(2)设直线3x﹣4y+15=0与圆C交于A,B两点,求△ABC的面积.
已知的三个顶点.求:
(1)边上高所在的直线方程;
(2)边中线所在的直线方程.
如图,在四棱锥P−ABCD中,底面ABCD为平行四边形,平面PAD⊥平面ABCD,PA=PD,E,F分别为AD,PB的中点.
(1)求证:PE⊥BC;
(2)求证:EF∥平面PCD.
如图所示,四棱锥V-ABCD的底面为边长等于2 cm的正方形,顶点V与底面正方形中心的连线为棱锥的高,侧棱长VC=4 cm,求这个四棱锥的体积.
已知集合,,且,求实数的取值范围.