为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前三天观测的该微生物的群落单位数量分别为12,16,24.根据实验数据,用y表示第天的群落单位数量,某研究员提出了两种函数模型;①;②,其中a,b,c,p,q,r都是常数.
(1)根据实验数据,分别求出这两种函数模型的解析式;
(2)若第4天和第5天观测的群落单位数量分别为40和72,请从这两个函数模型中选出更合适的一个,并计算从第几天开始该微生物群落的单位数量超过1000.
已知函数的图象经过三点,且函数在区间内只有一个最值,且是最小值.
(1)求函数的解析式;
(2)求函数的单调递减区间及其图象的对称轴方程.
已知f(x)sin(2x).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并写出取最大值时自变量x的集合;
(3)求函数f(x)在x∈[0,]上的最值.
计算:
(1)已知,求的值;
(2)若,求的值.
已知函数是定义在上的周期为的奇函数,时,,则_____.
把物体放在空气中冷却,如果物体原来的温度是,空气温度是,分钟后温度可由公式求得,现有的物体放在的空气中冷却,当物体温度降为时,所用冷却时间____________分钟.