设为圆上任意一点,过点作轴的垂线,垂足为,点是线段上的一点,且满足.
(1)求点的轨迹的方程;
(2)过点作直线与曲线相交于,两点,设为坐标原点,当的面积最大时,求直线的方程.
如图,在五棱锥中,平面,,,,,,.
(1)求证:平面;
(2)求直线与平面所成的角是,求五棱锥的体积.
在中,角、、所对的边分别为、、,且向量与向量共线.
(1)求角的大小;
(2)若,且,,求三角形的面积.
某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组,,第二组,,第八组,,如图是按上述分组方法得到的频率分布直方图的一部分.
(1)求第七组的频率,并完成频率分布直方图;
(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);
(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.
在中,,,,为外一点,满足,则三棱锥的外接球的半径为______.
已知为第三象限角,,则_____.