已知函数在区间上有最大值和最小值,设.
(1)求,的值;
(2)若不等式在上有解,求实数的取值范围;
(3)若有三个不同的实数解,求实数的取值范围.
对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.
①对任意的x∈[0,1],总有f(x)≥0;
②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.已知函数g(x)=x2与h(x)=2x﹣b是定义在[0,1]上的函数.
(1)试问函数g(x)是否为G函数?并说明理由;
(2)若函数h(x)是G函数,求实数b组成的集合.
运货卡车以每小时千米的速度匀速行驶千米,按交通法规则限制(单位:千米/小时),假设汽油的价格是每升元,而汽车每小时耗油升,司机工资是每小时元.
(1)求这次行车总费用关于的表达式;
(2)当为何值时,这次行车的总费用最低,并求出最低费用的值.(精确到)
已知函数是定义在上的奇函数,且.
(1)求函数的解析式;
(2)用定义证明:函数在上是增函数.
已知,求函数的值域.
已知两条直线l1:y=m 和l2:y(m>0),直线l1与函数y=|log2x|的图象从左至右相交于点A,B,直线l2与函数y=|log2x|的图象从左至右相交于C,D.记线段AC和BD在X轴上的投影长度分别为a 和b.当m变化时,的最小值为()
A. B. C. D.