在区间内随机选取一个实数,则事件“”发生的概率为( )
A. B. C. D.
设集合A={x|﹣1<x<1},,则A∩B=( )
A.{x|﹣1<x<1} B.{x|0<x<1} C.{x|0≤x<1} D.{x|0≤x≤1}
设命题p:∀x∈R,|x|>x,则¬p为( )
A.∃x0∈R,|x0|<x0 B.∀x∈R,|x|<x
C.∀x∈R,|x|≤x D.∃x0∈R,|x0|≤x0
已知过点的直线l与抛物线E:交于点A,B.
若弦AB的中点为M,求直线l的方程;
设O为坐标原点,,求.
有一个不透明的袋子,装有4个大小形状完全相同的小球,球上分别标有数字1,2,3,4.现按如下两种方式随机取球两次,每种方式中第1次取到球的编号记为,第2次取到球的编号记为.
(1)若逐个不放回地取球,求是奇数的概率;
(2)若第1次取完球后将球再放回袋中,然后进行第2次取球,求直线与双曲线有公共点的概率.
在公差不为零的等差数列{an}中,a6=17,且a3,a11,a43成等比数列.
(1)求数列{an}的通项公式;
(2)令,求数列{bn}的前n项和Sn.