已知命题,总有,则为( )
A.,使得 B.,总有
C.,使得 D.,总有
已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.
(1)求椭圆的方程;
(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.
如图,四边形为正方形,,且,平面.
(1)证明:平面平面;
(2)求二面角的余弦值.
有一个不透明的袋子,装有4个大小形状完全相同的小球,球上分别标有数字1,2,3,4.现按如下两种方式随机取球两次,每种方式中第1次取到球的编号记为,第2次取到球的编号记为.
(1)若逐个不放回地取球,求是奇数的概率;
(2)若第1次取完球后将球再放回袋中,然后进行第2次取球,求直线与双曲线有公共点的概率.
在公差不为零的等差数列{an}中,a6=17,且a3,a11,a43成等比数列.
(1)求数列{an}的通项公式;
(2)令,求数列{bn}的前n项和Sn.
国家统计局对某市最近十年小麦的需求量进行统计调查发现小麦的需求量逐年上升,如表是部分统计数据:
年份x | 2009 | 2011 | 2013 | 2015 | 2017 |
年需求量y(万吨) | 336 | 346 | 357 | 376 | 385 |
(1)利用所给数据求年需求量y与年份x之间的回归直线方程x;
(2)请利用(1)中所求出的回归直线方程预测该市2019年的小麦需求量.
(参考公式:,)