己知集合,,则
A. B. C. D.
已知椭圆:的左、右顶点分别为,,右焦点为,且上的动点到的距离的最大值为4,最小值为2.
(1)证明:.
(2)若直线:与相交于,两点(,均不与,重合),且,试问是否经过定点?若经过,求出此定点坐标;若不经过,请说明理由.
某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):
学生 | 高一 | 高二 | 高三 |
满意 | 500 | 600 | 800 |
不满意 | 300 | 200 | 400 |
(1)求从所有参与调查的人中任选1人是高三学生的概率;
(2)从参与调查的高三学生中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.
已知椭圆:的离心率为,且经过点,为椭圆的左焦点.直线:与椭圆交于,两点.
(1)求椭圆的标准方程;
(2)求的面积.
已知集合A={x|1-a≤x≤1+a}(a>0),B={x|x2-5x+4≤0}.
(1)若“x∈A”是“x∈B”的必要不充分条件,求实数a的取值范围;
(2)对任意x∈B,不等式x2-mx+4≥0都成立,求实数m的取值范围.
求分别满足下列条件的椭圆的标准方程.
(1)焦点坐标为和,P为椭圆上的一点,且;
(2)离心率是,长轴长与短轴长之差为2.