已知抛物线Γ的准线方程为.焦点为.
(1)求证:抛物线Γ上任意一点的坐标都满足方程:
(2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;
(3)设垂直于轴的直线与抛物线交于两点,求线段的中点的轨迹方程.
设是等差数列,公差为,前项和为.
(1)设,,求的最大值.
(2)设,,数列的前项和为,且对任意的,都有,求的取值范围.
请解答以下问题,要求解决两个问题的方法不同.
(1)如图1,要在一个半径为1米的半圆形铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.
(2)如图2,要在一个长半轴为2米,短半轴为1米的半个椭圆铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.
如图,在正六棱锥中,已知底边为2,侧棱与底面所成角为.
(1)求该六棱锥的体积;
(2)求证:
某人驾驶一艘小游艇位于湖面处,测得岸边一座电视塔的塔底在北偏东方向,且塔顶的仰角为,此人驾驶游艇向正东方向行驶1000米后到达处,此时测得塔底位于北偏西方向,则该塔的高度约为( )
A.265米 B.279米 C.292米 D.306米
若展开,则展开式中的系数等于( )
A.在中所有任取两个不同的数的乘积之和 B.在中所有任取三个不同的数的乘积之和 C.在中所有任取四个不同的数的乘积之和 D.以上结论都不对