不等式的解集是_____.
已知函数,.
(1)求不等式的解集;
(2)已知,记函数的最小值为M,求证:.
已知直线l的参数方程为(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)若点,直线l与曲线C交于A,B两点.求的值.
已知函数.
(1)讨论函数的极值点的个数;
(2)当函数有两个极值点,时,求证:.
已知点C是平面直角坐标系中的一个动点,过点C且与y轴垂直的直线与直线交于点M,若向量与向量垂直,其中O为坐标原点.
(1)求点C的轨迹方程E;
(2)过曲线E的焦点作互相垂直的两条直线分别交曲线E于A,B,P,Q四点,求四边形APBQ的面积的最小值.
某超市新上一种瓶装洗发液,为了打响知名度,举行为期六天的低价促销活动,随着活动的有效开展,第六天该超市对前五天中销售的洗发液进行统计,y表示第x天销售洗发液的瓶数,得到统计表格如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 4 | 6 | 10 | 15 | 20 |
(1)若y与x具有线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并预测第六天销售该洗发液的瓶数(按四舍五入取到整数);
(2)超市打算第六天加大活动力度,购买洗发液可参加抽奖,中奖者可领取奖金20元,中奖概率为,已知甲、乙两名顾客抽奖中奖与否相互独立,求甲、乙所获得奖金之和X的分布列及数学期望.
参考公式:,.