设集合,,.则实数_______.
已知函数,是偶函数,则______.
已知向量,,若,则实数_________.
函数的定义域是___________.
对于曲线,若存在非负实数和,使得曲线上任意一点,恒成立(其中为坐标原点),则称曲线为有界曲线,且称的最小值为曲线的外确界,的最大值为曲线的内确界.
(1)写出曲线的外确界与内确界;
(2)曲线与曲线是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;
(3)已知曲线上任意一点到定点的距离之积为常数,求曲线的外确界与内确界.
已知椭圆的两焦点分别为,,是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两直线、分别交椭圆于、两点.
(1)求点坐标;
(2)当直线经过点时,求直线的方程;
(3)求证直线的斜率为定值.