已知向量,,则与的夹角为________
设空间两直线、满足(空集),则直线、的位置关系为________
关于的方程的解为________
等差数列首项和公差都是,记的前n项和为,等比数列各项均为正数,公比为q,记的前n项和为:
(1)写出构成的集合A;
(2)若将中的整数项按从小到大的顺序构成数列,求的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得同时为(1)中集合A的元素?若存在,写出所有符合条件的的通项公式,若不存在,请说明理由.
在平面直角坐标系xOy中,曲线C上的点到点的距离与它到直线的距离之比为,圆O的方程为,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中,设直线AB,AC的斜率分别为;
(1)求曲线C的方程,并证明到点M的距离;
(2)求的值;
(3)记直线PQ,BC的斜率分别为、,是否存在常数,使得?若存在,求的值,若不存在,说明理由.
对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数p,使其值域为,则称函数为的“渐近函数”;
(1)证明:函数是函数的渐近函数,并求此时实数p的值;
(2)若函数,证明:当时,不是的渐近函数.