已知向量,,若与共线,则( )
A.-2 B.-1 C.1 D.2
设函数.
(1)当时,求不等式的解集;
(2)若,使得不等式成立,求的取值范围.
在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点О为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求C和l的直角坐标方程;
(2)设l与C相交于A,B两点,定点,求的值.
设函数(为常数).
(1)讨论函数可能取得的最大值或最小值;.
(2)已知时,恒成立,求的取值范围.
已知动圆过定点,且在y轴上截得的弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)已知点,长为的线段PQ的两端点在轨迹C上滑动.当轴是的角平分线时,求直线PQ的方程.
一款手游,页面上有一系列的伪装,其中隐藏了4个宝藏.如果你在规定的时间内找到了这4个宝藏,将会弹出下一个页面,这个页面仍隐藏了2个宝藏,若能在规定的时间内找到这2个宝藏,那么闯关成功,否则闯关失败,结束游戏;如果你在规定的时间内找到了3个宝藏,仍会弹出下一个页面,但这个页面隐藏了4个宝藏,若能在规定的时间内找到这4个宝藏,那么闯关成功,否则闯关失败,结束游戏;其它情况下,不会弹出下一个页面,闯关失败,并结束游戏.
假定你找到任何一个宝藏的概率为,且能否找到其它宝藏相互独立..
(1)求闯关成功的概率;
(2)假定你付1个Q币游戏才能开始,能进入下一个页面就能获得2个Q币的奖励,闯关成功还能获得另外4个Q币的奖励,闯关失败没有额外的奖励.求一局游戏结束,收益的Q币个数X的数学期望(收益=收入-支出).