已知函数.
(1)求函数的单调区间;
(2)当函数与函数图象的公切线l经过坐标原点时,求实数a的取值集合;
(3)证明:当时,函数有两个零点,,且满足.
已知数列满足,,其中是数列的前n项和.
(1)求和的值及数列的通项公式;
(2)设.
①若,求k的值;
②求证:数列(中的任意一项总可以表示成该数列其他两项之积.
如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅圆”.过椭圆第一象限内一点P作x轴的垂线交其“辅圆”于点Q,当点Q在点P的上方时,称点Q为点P的“上辅点”.已知椭圆上的点的上辅点为.
(1)求椭圆E的方程;
(2)若的面积等于,求上辅点Q的坐标;
(3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.
为响应“生产发展、生活富裕、乡风文明、村容整洁、管理民主”的社会主义新农村建设,某自然村将村边一块废弃的扇形荒地(如图)租给蜂农养蜂、产蜜与售蜜.已知扇形AOB中,,(百米),荒地内规划修建两条直路AB,OC,其中点C在上(C与A,B不重合),在小路AB与OC的交点D处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区.设,蜂巢区的面积为S(平方百米).
(1)求S关于的函数关系式;
(2)当为何值时,蜂巢区的面积S最小,并求此时S的最小值.
如图,在斜三棱柱中,,,分别是,的中点.
(1)求证:平面;
(2)若,求证:.
己知向量,.
(1)当时,求的值;
(2)设函数,且,求的最大值以及对应的x的值.