椭圆经过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点任作一条直线与椭圆交于不同的两点.在轴上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.
如图,三棱柱中,侧面,已知,,,点E是棱的中点.
(1)求证:平面ABC;
(2)在棱CA上是否存在一点M,使得EM与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.
在中,内角,,的对边分别是,,,已知,点是的中点.
(Ⅰ)求的值;
(Ⅱ)若,求中线的最大值.
有一些正整数排成的倒三角,从第二行起,每个数字等于“两肩”数的和,最后一行只有一个数M,那么________.
在《九章算术》中,将底面为直角三角形,侧棱垂直于底面的三棱柱称之为堑堵,如图,
在堑堵中,,,堑堵的顶点到直线的距离为m,到平面的距离为n,则的取值范围是________.
由方程确定曲线所围成的区域的面积是________.