设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=( )
A.{x|x>–3} B.{x|x<1}
C.{x|x≥–3} D.{x|–3≤x<1}
已知,,不等式恒成立.
(1)求证:
(2)求证:.
以直角坐标系xOy的原点为极坐标系的极点,x轴的正半轴为极轴.已知曲线的极坐标方程为,P是上一动点,,Q的轨迹为.
(1)求曲线的极坐标方程,并化为直角坐标方程,
(2)若点,直线l的参数方程为(t为参数),直线l与曲线的交点为A,B,当取最小值时,求直线l的普通方程.
已知直线是曲线的切线.
(1)求函数的解析式,
(2)若,证明:对于任意,有且仅有一个零点.
已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.
(1)求椭圆E的标准方程,
(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.
近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:
x | 1 | 3 | 4 | 6 | 7 |
y | 5 | 6.5 | 7 | 7.5 | 8 |
y与x可用回归方程 ( 其中,为常数)进行模拟.
(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.
(Ⅱ)据统计,10月份的连续16天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.
(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;
(ⅱ)求这16天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)
参考数据与公式:设,则
0.54 | 6.8 | 1.53 | 0.45 |
线性回归直线中,,.